Search results

1 – 7 of 7
Article
Publication date: 14 September 2010

Andrej Stermecki, Oszkár Bíró, Kurt Preis, Siegfried Rainer, Klaus Krischan and Georg Ofner

The purpose of this paper is to define a time‐efficient numerical procedure for the extraction of load‐dependent equivalent circuit (EC) parameters of induction machines. The…

Abstract

Purpose

The purpose of this paper is to define a time‐efficient numerical procedure for the extraction of load‐dependent equivalent circuit (EC) parameters of induction machines. The parameters are determined for every operating point, thus their variation due to skin effect and material saturation under arbitrary load condition is taken into consideration.

Design/methodology/approach

Two methods are presented and compared. The first one is based on the numerical simulation of the standard measurement process, yielding an EC with constant parameters. A time‐harmonic finite element analysis is applied in the second method to calculate the load‐dependent EC parameters. Material linearization and the superposition principle for the magnetic flux are employed to define the leakage inductances.

Findings

A distinct load dependence of all EC parameters has been proven as well as the clear disparity between stator and rotor leakage inductances. These effects can only be taken accurately into account by the EC obtained by the second numerical procedure proposed.

Originality/value

The presented method successfully overcomes typical problems of the measurement process and of the standard numerical procedure for EC parameter estimation, thus the obtained EC parameters are load‐dependent while the physical interpretation of the variables and parameters remains straightforward. Hence, the paper of the internal machine variables is enabled.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 November 2011

Bernhard Weilharter, Oszkár Bíró, Hermann Lang and Siegfried Rainer

The purpose of this paper is to set up a comprehensive numerical approach to estimate the 3D structural vibration and noise radiation of an induction machine.

Abstract

Purpose

The purpose of this paper is to set up a comprehensive numerical approach to estimate the 3D structural vibration and noise radiation of an induction machine.

Design/methodology/approach

The rotating force waves, acting in the air gap of an induction machine and obtained by an electromagnetic finite element multi‐slice simulation, are applied to the 3D structural finite element model and a structural harmonic simulation is performed. The sound emission due to the vibration of the surface of the machine is computed with a 3D boundary element model.

Findings

The paper outlays problematic issues when setting up the numerical models, i.e. the structural finite element model. The material properties strongly affect the structural behaviour and therefore the radiated noise.

Originality/value

The 3D force distribution in the air gap and the resulting vibrations are computed. The structural behaviour, i.e. the different vibrational behaviour of stator and surface is discussed. The correlation of the structural vibrations and the noise radiation is investigated.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 September 2013

Mathias Mair, Bernhard Weilharter, Siegfried Rainer, Katrin Ellermann and Oszkár Bíró

The purpose of this paper is to analyse the eigenforms and eigenfrequencies of stator core stack by experimental and numerical investigation. The influence of material parameters…

Abstract

Purpose

The purpose of this paper is to analyse the eigenforms and eigenfrequencies of stator core stack by experimental and numerical investigation. The influence of material parameters on the structural vibrations is carried out in order to describe the laminated structure of stator core stack with a homogeneous material model.

Design/methodology/approach

The finite element method is applied for a numerical modal analysis. Therefore, a homogeneous transversally isotropic material model is introduced and the influence of each material parameter on the dynamical behavior is investigated. These material parameters are stepwise adjusted to the results from the experimental modal analysis. The investigation includes results from different stator core stacks.

Findings

The influence of material on the modal parameters is shown. Furthermore, material parameters are carried out for stator core stacks, which describe the measured dynamical behaviour.

Originality/value

The presented investigations show a useable material model and corresponding parameters to the description of the laminated structure of stator core stacks.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 September 2012

Bernhard Weilharter, Oszkár Bíró and Siegfried Rainer

The purpose of this paper is to analyse the surface vibrations of an induction machine due to force waves acting on the stator and rotor core. The focus lies on the investigation…

Abstract

Purpose

The purpose of this paper is to analyse the surface vibrations of an induction machine due to force waves acting on the stator and rotor core. The focus lies on the investigation of the influence of force waves with axial variation and with higher spatial ordinal numbers on the surface vibration of an induction machine and thus its emitted noise.

Design/methodology/approach

Unit force waves with different spatial ordinal numbers and varying in axial direction are set up and applied on the stator and rotor teeth of a structural finite element model of an induction machine. Structural harmonic analyses with different frequencies are performed and the deformation of the machine is determined. After that, the root mean square of the normal component of the velocity on the surface of the machine's housing is determined and compared for the different force waves.

Findings

The influence of force waves with spatial ordinal numbers of higher order can have a significant influence on the structural vibration, especially if the spatial ordinal number is near the number of teeth. Furthermore, it is shown that the structure may react sensitively to axial variations of the forces, particularly near distinct structural resonances.

Originality/value

The presented investigations show relevant issues influencing the noise behaviour of electrical machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 July 2009

S. Rainer O. Bíró and A. Stermecki

Different solution methods, using finite element method in continuous and discrete frequency domain, are compared with each other in order to find the most appropriate method for…

Abstract

Purpose

Different solution methods, using finite element method in continuous and discrete frequency domain, are compared with each other in order to find the most appropriate method for the estimation of steady state vibrations in linear structural and mechanical problems. The purpose of this paper is to describe the procedures.

Design/methodology/approach

The continuous and some relevant discrete frequency domain solution methods are compared by an analytical investigation as well as by the numerical examination of a simple model. Finally, results for a more relevant example using finite elements are presented.

Findings

It is shown that the steady state computation using the continuous frequency domain system description delivers the exact solution for a given system.

Originality/value

Based on the presented results, the use of continuous frequency domain system description is recommendable in most cases.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Naghi Rostami and Majid Rostami

The purpose of this paper is the fast and accurate modelling of surface-mounted Axial-Flux Permanent-Magnet (AFPM) machines equipped with cylindrical magnets using quasi-3D…

Abstract

Purpose

The purpose of this paper is the fast and accurate modelling of surface-mounted Axial-Flux Permanent-Magnet (AFPM) machines equipped with cylindrical magnets using quasi-3D approach. Furthermore, the accuracy of the method is improved by using leakage coefficient, saturation coefficient and an appropriate permeance function.

Design/methodology/approach

Quasi-3D approach is used for fast and accurate modelling of AFPM machines. Air-gap flux density distribution, induced back EMF, and produced cogging torque are calculated using the proposed method with reasonable accuracy.

Findings

The results obtained by quasi-3D approach compared to Finite-Element-Analyses (FEA) shows how accurate, fast and efficient this method is. It is proved that, this method can be successfully applied to evaluate the performance of the AFPM machines.

Originality/value

Effectiveness and accuracy of quasi-3D approach is assessed on different AFPM machines. Furthermore, to increase the accuracy of computations, the effects of the magnetic potential drop at iron parts of the machine are taken into account by using a saturation coefficient. Besides, the influence of the slot opening on the flux density distribution is taken into account by using an appropriate relative permeance function.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 14 September 2010

Rainer Treptow

This chapter starts with a short discussion of social work and how it interlinks educational issues with forms of support to enable people to cope with difficult situations. An…

Abstract

This chapter starts with a short discussion of social work and how it interlinks educational issues with forms of support to enable people to cope with difficult situations. An example shall illustrate that a global perspective on questions of governance in social work has to consider the historical, economic, and political context in which it takes place. It will then be argued that “governance building” might be a fundamental necessity in strengthening the empowerment of people, and this means accepting the ambivalence of support and control. In this context, some distinguished authors will be identified who considered social movements as motors of governance bringing in normative aspects, which cannot be reduced to functional theory. Finally, the chapter concludes by reflecting on the role of research in defining support programs in welfare states.

Details

International Educational Governance
Type: Book
ISBN: 978-0-85724-304-1

1 – 7 of 7